
Analyzing Emerging Web-Based Management Standards

Fernando Frota Redígolo
Tereza Cristina Melo de Brito Carvalho
Wilson Vicente Ruggiero
{fernando, carvalho, wilson}@larc.usp.br

LARC – Laboratório de Arquitetura e Redes de Computadores
EPUSP – Escola Politécnica da Universidade de São Paulo
Av. Prof. Luciano Gualberto, Travessa 3 – 158, sala C1-46
Cidade Universitária – CEP: 05.508-900
São Paulo – SP - Brazil
Phone: +55-11-818-5261

Abstract With the growth of the World Wide Web popularity, much work has been developed based on Web
technologies. In particular, these technologies have been deployed and have attracted a lot of
attention lately for improving existing network management tools, or even, for managing today’s
networks. This paper analyzes two emerging standards relying on web-based management.

Key Words network management, web-based management , World Wide Web, Java, JMAPI, WBEM.

1. Introduction

Nowadays the use of computer networks is disseminated.
Many people are employing them at work. As the users
become more acquainted with networks, they start to
increase their dependency on their services. The network
then becomes a strategic asset, and downtimes and faults
should be minimized. Moreover, they begin to demand for
new and improved services. In order to attend these
demands, many different technologies may need to coexist,
such as different LAN technologies (e.g. Ethernet, Token
Ring, FDDI, ATM), different network protocols (e.g.
TCP/IP, IPX/SPX) and different computer platforms (e.g.
Novell Netware, MS-Windows family, different flavors of
Unix). As a consequence, the networks have become bigger
and more complex (Figure 1).

This increasing networks’complexity has as
consequence an increasing need of powerful
management tools in order to fulfill users’
requirements and minimize faults and downtimes.
Much work has been done to improve existing tools to
better aid network administrators.

With the World Wide Web popularity, many new
technologies were developed for supporting new web-based
applications; some of them have drawn the attention of
management systems designers. The possibility of using web
technologies can bring the management world some
important benefits, such as:

• An inherently distributed information
technology;

• A platform-independent Graphical User
Interface (GUI), allowing the network to be

managed from different places or even across
the Internet;

• A support for security protocols and
mechanisms, such as the Secure Sockets Layer
(SSL);

• Database connectivity, with periodically or on-
demand generated HTML reports;

• Push technology

In order to provide interoperability, standards related to web
technologies in the management field have been proposed.
The purpose of this work is analyzing these emerging
standards as an initial step for developing further work in a
web-based network management system.

1.1. Emerging Standards in Web-based
Management

The use of web technologies in the management field has
already gathered important supporters. In late 1996, many
important computer companies joined to define standards for
managing the entire network through the Web. They came
up with two different standards: the Web-Based Enterprise
Management (WBEM) and the Java Management
Application Program Interface (JMAPI).

1.2. WBEM

Five influent computer companies (Microsoft, Compaq,
Intel, BMC Software and Cisco) launched the WBEM
initiative. It proposes to “consolidate and unify the data
provided by existing technologies”. To accomplish this
target, it defines a single, object-oriented model for all

Analyzing Emerging Web-Based Management Standard

TECHNICAL REPORT ON NETWORKS AND DISTRIBUTED SYSTEMS 2
LARC – EPUSP

managed resources and a single protocol for accessing these resources; these elements are mapped to the information

Users demand more
resources from the
network

Growth in the use of computer
networks and distributed systems

Users depend more upon the
network resources

Bigger and more
complex networks

Network → strategic asset

Downtimes should be
minimized

New and improved
services

Harder to control

Figure 1 - Vicious circle on a network use and requirements.

model and the communication protocol existing on each
managed device.
In order to get broader acceptance, the WBEM elements are
being submitted to standard bodies. The communication
protocol should be submitted to the IETF (Internet
Engineering Task Force) in the near future, while the data
model was submitted to the DMTF (Desktop Management
Task Force), forming the Common Information Model
(CIM)
Besides submitting WBEM to standard bodies, there are
also commercial products that promise to implement it, in an
attempt to make it a de facto standard. One of them is
Microsoft’s Zero Administration for Windows Initiative
(ZAW, [11]), which specifies the system architecture for a
fully manageable network, composed of Windows 98 and
NT 5.0 machines. The other one is Intel’s NetPC
specification [10], which is the hardware specification of a
fully manageable corporate machine.

1.3. JMAPI

The Java Management API was launched by Sun
Microsystems as an extension to its Java language and also
gathered important supporters. The main idea behind JMAPI
is that managed resources can be modeled as Java objects.
JMAPI then offers an application-level framework for
building management applications, using components
already developed for the Java language and integrating
different management technologies under a common GUI.
 It is It important to point out that these two standards are
not mutually exclusive. WBEM is defined in terms of
protocol
operations and a formal model for managed resources, while
that JMAPI is a programming interface that leaves protocols
as part of its implementation.

2. Analyzing Main Characteristics

2.1. Architecture

Both the WBEM and JMAPI are based on a proxy-
architecture, where a server stands between the browser and

the managed devices. In order to execute a management
operation, the administrator at the browser must contact a
management server that, in turn, decides how it should be
done, executing any necessary conversions.
In WBEM the central component is called the CIM Object
Manager or CIMOM (
, [1,2]). Besides handling requests, it has several functions,
such as handling events and enforcing the security in the
management system. It has a modular architecture: as it
should deal with several different management systems
(such as SNMP or DMI), there must be different modules to
deal with each one of these systems.

HMMP
SNMP

HMMP

DMI

CIM

Standard

Schema

CIMOM

Figure 2 - WBEM architecture

These modules, which therefore act as interfaces between
the abstract object defined by WBEM and the real world
managed resources, are called providers.
JMAPI’s proxy server is called Admin Runtime Module or
ARM (Figure 3, [12]). Besides handling management
requests and events, it interfaces with a separate relational
database server (RDBMS), through the use of the Java
Database Connectivity API (JDBC). Every successful
management operation controlled by the ARM is logged on a
JDBC-compliant database, and a commit/rollback
mechanism is responsible for maintaining the integrity of the
database. In JMAPI’s framework, the RDBMS is
responsible for data access security, replication and backup
of management data, among other characteristics.

Analyzing Emerging Web-Based Management Standard

TECHNICAL REPORT ON NETWORKS AND DISTRIBUTED SYSTEMS 3
LARC - EPUSP

RMI
SNMP

RMI

RDBMS

ARM - Admin

Runtime Module

JDBC

JVM
Java

Virtual
Machine

BUI - Browser
User Interface

Figure 3 - JMAPI Architecture

Differently from WBEM, where it is not necessary to modify
any agents, in JMAPI some features can only be used if
there is a Java Virtual Machine (JVM) in the managed
device and the agent is implemented in Java. Among these
characteristics are extensible agents (in which new features
can be downloaded on demand) and an agent versioning
subsystem, (in order to update the agents distributed on the
network).

2.2. Managed Resources Model

In both standards, the managed resources are modeled after
an object-oriented model, with classes, objects, attributes
and methods. In each standard there are several classes
already organized according to a hierarchy named
respectively the WBEM CIM Mandatory Schema (Figure 4,
[8, 9]) and the JMAPI base classes (Figure 5, [12]). These
definitions are quite similar, not only because of companies
that support both standards, but also due to the fact that
there are, in DMTF CIM Sub-Committee, JMAPI supporters
(like Sun Microsystems, for example), which helped shape
CIM model closer to JMAPI definitions. This similarity

would also ease a possible convergence of the two standards,
attending to the interests of companies that support both.

2.3. Communication Protocol

WBEM communication protocol is the HyperMedia
Management Protocol, (HMMP). It is used for all
communication between the browser and the CIMOM and
between the CIMOM and HMMP-compliant devices (
). It has several primitives, arranged in three groups [3]:

• Operations: primitives regarding classes and objects
manipulations, such as the creation and removal of
classes and instances, query operations and method
execution;

• Indications: used to signalize the occurrence of an
event;

• Security Operations: primitives used in the security
subsystem.

P h y s i c a l E l e m e n t

P h y s i c a l P a c k a g e

P h y s i c a l L i n k

P h y s i c a l C o n n e c t o r

P h y s i c a l C o m p o n e n t

L o g i c a lE l e m e n t

S y s t e m

D e v i c e

D i s k P a r t i t i o n

P r o t o c o l

S o f t w a r e C o m p o n e n t

S y s t e m S e r v i c e

F i l e S y s t e m

P r o c e s s

T h r e a d

M a n a g e d S y s t e m E l e m e n t

Figure 4 - Classes and subclasses in the WBEM CIM Mandatory Schema

Analyzing Emerging Web-Based Management Standard

TECHNICAL REPORT ON NETWORKS AND DISTRIBUTED SYSTEMS 4
LARC - EPUSP

PhysicalElement

Person

PhysicalContainer

PhysicalPrinter

PhysicalStorageDevice

InterfaceDevice

PhysicalComputerSystem

LogicalElement

Account

LogicalContainer

Logical Printer

LogicalDevice

LogicalComputerSystem

Protocol Address

NetworkAddress

Service

ManagedSystemElement

Figure 5 - JMAPI base classes and subclasses.

2.4. Communication Protocol

WBEM communication protocol is the HyperMedia
Management Protocol, (HMMP). It is used for all
communication between the browser and the CIMOM and
between the CIMOM and HMMP-compliant devices (
). It has several primitives, arranged in three groups [3]:

• Operations: primitives regarding classes and objects
manipulations, such as the creation and removal of
classes and instances, query operations and method
execution;

• Indications: used to signalize the occurrence of an
event;

• Security Operations: primitives used in the security
subsystem.

 Contrary to WBEM message-passing protocol, JMAPI uses a
higher level communication mechanism called Remote
Method Invocation (RMI), which is Java’s mechanism for
distributed applications [16]. The RMI is an RPC-style
mechanism for communication, where the communication
details are left to the RMI compiler (it generates special
code, called stubs, which will handle the communication
between two RMI entities). All communication in JMAPI
environment uses RMI (Figure 3).
 Both HMMP and RMI depend on a separate transport
protocol to work. WBEM defines the Hypermedia Transport
Protocol (HMTP), a new connectionless protocol which
would provide ordered delivery of data and the handling of
lost or duplicated packets (however, current HMMP
implementations use TCP as its transport protocol [7]). On
the other hand, RMI uses two different transport protocols:
besides TCP (the preferred one), it offers an alternative
method, which encapsulates an RMI request in an HTTP
POST request to the ARM. This feature is used to pass RMI
calls through a firewall’s trusted HTTP port and is

automatically done when the RMI client cannot open a direct
TCP connection to the server [16].

2.5. Administrator GUI

 Both standards use a browser as the interface between the
network manager and the management system. As WBEM
uses HMMP for all communication involving the browser, it
must be an HMMP-compliant browser (which could
recognize hmmp:// URLs) or instead an Active-X control
that speaks HMMP. The browser is not necessary in WBEM
framework; in fact, in Microsoft ZAW initiative the browser
is an option, as it is replaced by a program called Microsoft
Management Console - MMC [11].
 JMAPI framework uses a Java-enabled browser as a
container for Java applets: after downloading JMAPI initial
applet (through HTTP or HTTPS), it will handle all RMI
communication with JMAPI server. All applet loading is
done through HTTP and HTML pages. Again, an applet
viewer can be used instead of a browser.
 In JMAPI architecture the GUI has great importance: instead
of integrating underlying management technologies in
managed devices through a new information model and
protocol, it integrates them through the GUI. Special
graphical elements, more suitable to handling management
data, extend Java’s windowing classes and are defined in
[13, 14].

2.6. Database Connectivity

In WBEM the database is integrated with the CIMOM and
all data access must be done using HMMP query operations
(which uses a subset of the SQL language). Contrasting with
this approach, JMAPI uses a separate commercial RDBMS,
which must be compatible with JDBC. This approach allows
access to data not only through JMAPI elements, but also
through other standards, such as SQL and ODBC. It also
allows that reports in HTML are generated on a periodic

Analyzing Emerging Web-Based Management Standard

TECHNICAL REPORT ON NETWORKS AND DISTRIBUTED SYSTEMS 5
LARC - EPUSP

basis, freeing the administrator of consulting periodically the
management subsystem.
JMAPI’s approach of separating the database server from
the management server eases the construction of
management applications, freeing the programmer from
database details. Another important point is that while on
WBEM the CIMOM is a management server plus a DBMS
which must reside on the same machine, on JMAPI it is
possible to put the RDBMS and the ARM on separated
machines. This characteristic also gives the system higher
availability: as the database can be replicated, a fault in a
RDBMS would not significantly impact the operation of the
system.

2.7. Distributed x Centralized Management

 Both standards define a centralized architecture, where
different administrators manage the network through the
same server. It is also possible to have some degree of
distributed management through different servers managing
different resources (this would enable, for example, two
subnetworks separated through a WAN link to be managed
by different management servers). However, none provides
facilities for manager-to-manager communication (i.e.
communication between proxy servers), which would enable
hierarchical management and data correlation between two
entities.

2.8. Security Subsystem

 A web-based management system must have a carefully
designed security subsystem: the flexibility of managing an
entire network with a browser, outside firewalls, opens a
new door for outside intruders. WBEM and JMAPI take
rather different approaches to security.
 JMAPI does not define a formal security subsystem of its
own; rather, it relies on Java and RMI security, besides on
efforts being made to add security facilities to the Java
language. Three key elements compose this strategy: the
Java security model [17], the Java Security API [18] and
extensions to RMI [16]. The former defines rules for
applets, class loading, among others. The Java security API
defines facilities to deal with keys, certificates, access
control lists (ACLs), message hashing and digital signatures.
Finally, the latest RMI specification enables the use of
encrypted sockets, based on SSL.
The approach made by WBEM is the definition of a whole
new security subsystem [6]. It is divided in two subsystems:
network security and schema security. The former deals with
securing HMMP traffic, and defines three levels:
authentication only (Level 1), authentication plus message
encryption (Level 2) and Level 2 plus external security
mechanisms (Level 3). Schema security deals with access
control and also defines three independent levels, ranging
from full access for authenticated users (Level 1) until
Access Control Lists (ACLs) for each class or object (Level
3).
 It is especially important to examine how these security
elements can provide key security services, like
authentication, non-repudiation, confidentiality and
discretionary access control.

2.8.1. Authentication
 JMAPI, or rather, Java, offers only basic blocks for
programming an authentication mechanism: encryption,
certificates, keys, hashing. An authentication mechanism
must be devised in order to guarantee JMAPI security.
 On the other hand, WBEM network security defines a
simple authentication mechanism, based on a
challenge/response algorithm, for its level-1 network
security protocol:

• A client requesting a logon sends the server the

username requesting the logon;
• The server, in order to authenticate a client, sends back

a newly generated random 128-bits value, the “nonce”;
• Both sides compute an Access Token using the MD5

message digest algorithm:

 Access Token = MD5(MD5(password) XOR
nonce)

• This Access Token is then included in every HMMP

operation, in order to authenticate the requests (it must
be equal to the one calculated by the server).

 Although the username’s password does not need to be
recorded on the server (only its digest) and the password is
never transmitted, it is vulnerable to playback attacks. If an
intruder can eavesdrop the network and intercept any
HMMP operation, then it is possible for him/her to obtain
the Access Token and put it in his own HMMP operations.
To minimize this drawback, “nonces” are never reused and
the Access Token has limited lifetime (the server can
invalidate it at any time).

2.8.2. Confidentiality
 Both standards have not defined precisely how
confidentiality will be guaranteed. While that on JMAPI
confidentiality will be enforced through the use of SSL
together with RMI (which is not possible at present),
WBEM defines a draft protocol for network security level 2
which uses RSA public key cryptography during the
authentication phase and RC4 symmetric cryptography in
subsequent messages. These keys are exchanged using the
following protocol:

• A client requesting a logon generates a public/private

key pair (with 40-bits key strength) and sends the
server the username and its newly calculated public
key;

• The server then also generates a 128-bits “nonce” and a
public/private key pair, and sends back the “nonce” and
its generated public key;

• Both sides generate the Access Token, as in level 1; the
client then requests to the server a session key,
including the Access Token encrypted with the server’s
public key;

• The server decrypts the Access Token to validate the
client (as in level 1), generates a 40-bits session key
and sends it back, encrypted with the client’s public
key;

• The client then decrypts the session key, which should
now be used for subsequent requests. The Access
Token is still used, in unencrypted form, to identify the
client requesting an operation.

Analyzing Emerging Web-Based Management Standard

TECHNICAL REPORT ON NETWORKS AND DISTRIBUTED SYSTEMS 6
LARC - EPUSP

 As in level 1, the Access Token is still used unencrypted to
authenticate the requests, which is still dangerous, as it can
be still extracted by eavesdropping and used in
impersonation. Although an intruder cannot submit the
server a custom HMMP operation (as the operation itself is
encrypted), it can force the server to process garbage, in a
sort of denial-of-service attack: the server sees the valid
Access Token, decrypts the operation and tries to process it,
with unknown consequences.
 There are a few problems with the use of keys in WBEM.
First, it uses only 40-bits keys, which is not considered as a
strong encryption (especially in the public/private key pair),
and it may not resist to real-time cryptanalysis. Besides, the
use of random public/private keys in the server instead of
certificates can lead to impersonation of the server: there is
no guarantee, as there is with a certificate, that the public
key sent is from the server desired. An intruder may spoof
an address for the server, establish a secure channel with the
client and receive confidential information, such as
passwords, from the trusting client.
 The use of stronger encryption algorithms and certificates is
left to level 3 network security, which is open for
implementation-specific extensions to the security model.

2.8.3. Discretionary Access Control
 Like authentication mechanisms, JMAPI offers facilities to
deal with ACLs, enabling the programming of access control
in JMAPI objects. Combined with a custom security
manager, it may be possible to use it to control not only
access to objects’ attributes, but also to its methods.
However, it must be hard-coded, and changes to ACLs
demand recoding the ARM.
 Instead of using Java ACL mechanisms, it is also possible to
use access control mechanisms present in the RDBMS. It
depends, though, on a JMAPI authentication subsystem, and
is limited only to access to data already gathered, not to
management methods.
 In WBEM access control is left to the schema security
subsystem, especially level 2 and 3 (in level 2, we can bind
ACLs to groups of objects, while that in level 3 we can
specify ACLs for each object)

2.8.4. Non-Repudiation
 There is no mechanism to deal with non-repudiation in both
standards. While that in JMAPI it must also be built, in
WBEM the possibility of impersonation makes non-
repudiation not feasible.

 JMAPI approach of leaving the whole security subsystem
open is rather dangerous, despite its flexibility. As the
authentication protocol must be coded almost from scratch,
an implementation error could have some serious
consequences, giving an intruder access to the entire
management system. It is not very practical also: a new
security policy means recoding JMAPI elements. The Java
design team is looking into these drawbacks, and an
authentication mechanism and dynamic security policy are
on their to-do’s list.
 WBEM approach is not without faults either. Level 1
network security is subject to eavesdropping of management
information and impersonation. Level 2 is more secure, but
the small size and randomness of public/private keys and the
transmission of the Access Token unencrypted can

compromise security in face of eavesdropping, real-time
cryptanalysis, and impersonation.

2.9. Use of Web-related technologies

 One of the main forces behind web-based management is the
possibility of using web protocols and technologies towards
the management area. Not only it is easier and faster to
implement applications based on existing technologies but it
also needs less testing (the technology itself does not need to
be tested, only conformance tests need to be applied).
 WBEM makes little use of web technologies, justifying the
“web-based” title by using Java applets and/or Active-X
controls for its user interface. Besides using Java applets,
JMAPI uses other web technologies:

♦ Context-sensitive help pages for the management

system (eventually for documenting the network) are
composed of HTML pages. These pages must be built
using some JMAPI-specific tags, which will enable a
precompiler to create an integrated table of contents,
cross-reference index, glossary and indexed keyword
table (for its help subsystem’s search mechanism).

♦ RMI can use HTTP as its transport protocol: if a direct
TCP connection to the server port is not possible (for
example, if a firewall stands between them), then the
applet encapsulates RMI messages in HTTP POST
messages.

♦ RMI will be able to use SSL as its transport protocol.

There are two important technologies that should also be
considered when it comes to web-based management: Secure
Sockets Layer (SSL) and push technologies.

2.9.1. SSL
In order to guarantee confidentiality in the communication
between the browser and the server, these standards could
use the SSL protocol, which is already implemented in most
browsers and has been extensively used and tested.
It is possible to use SSL with WBEM: instead of mapping
HMMP over a standard TCP connection, it could be mapped
over an SSL-channel. However, it may be unnecessary as
WBEM designers decided to implement encryption in
HMMP messages with level 2 network security. As level 2
is not formally defined, a more secure choice may be using
SSL with level 1 to avoid impersonations and disclosure of
confidential information.
At present it is not possible to use JMAPI with SSL.
Although there are SSL Java implementations available and
RMI uses sockets or HTTP as its transport protocol, it is not
possible to modify the current RMI implementation to
support SSL. It is promised that the next major version of
RMI (present in its JDK 1.2) will support the use of
"custom sockets", which can be modified by the programmer
(among the "custom sockets" already supported there will be
an "encrypted socket" type that uses SSL).

2.9.2. Push Technology
The use of push technologies can be quite useful in a
network management: instead of requesting information
periodically, an entity could register with the information
provider, which would then send the information
periodically or whenever it changed. Some scenarios that
could be imagined through the use of push technologies:

Analyzing Emerging Web-Based Management Standard

TECHNICAL REPORT ON NETWORKS AND DISTRIBUTED SYSTEMS 7
LARC - EPUSP

1. System software on managed devices could be updated
dynamically. Instead of upgrading the software on every
machine, a repository server could send the managed
device the new version to be installed;

2. The previous scenario could be extended further:
through the Internet the repository server could be
automatically fed with newer versions of drivers and
applications directly from their own manufacturers;

Similar to the first scenario, JMAPI offers an agent
versioning subsystem: a JMAPI-compliant device can
download new versions of its agent libraries whenever they
are available on the ARM. However, instead of using push
mechanisms, it is based on polling, where the agent verifies
with the server the latest version available. It could, though,
be implemented inside JMAPI, by reprogramming the
agents.
Implementing a push mechanism with WBEM is also
possible, however, as it is an application-level mechanism, it
would be implemented on top of WBEM, not within the
architecture.

2.9.3. Java Applets and Active-X controls
Both protocols rely heavily on these technologies at the
browser side. While JMAPI uses only Java applets, WBEM
uses either applets or Active-X controls, encouraging the use
of the latter. JMAPI also uses Java on the server side,
differently from WBEM (its SDK provides C++ libraries to
support the implementation of the CIMOM and its
providers).

2.10. Portability

Despite using a browser, which should enable the system to
be managed from any place on the Internet, WBEM is very
Windows-centric. It must use an Active-X enabled browser,
which nowadays means only Microsoft Internet Explorer (or
Netscape Navigator for Windows with special plug-ins), and
in WBEM SDK the providers communicate with CIMOM
using Microsoft’s Common Object Model (COM), leaving it
tied up to Windows platforms. There is already some work
being done to ease this lack of portability. There is a Java
API which provides applets a HMMP implementation and
functions to handle CIMOM information. The providers and

the CIMOM can also communicate through HMMP and
there is already a WBEM SDK version for HP-UX systems.
As it depends only on a Java Virtual Machine
implementation, JMAPI can be used on any system on which
there is such an implementation. Despite being relatively
easy to find a JVM in browsers (for the BUI) and in
operating systems (for both the ARM and for managed
devices), it limits its use on networking devices, such as
switches and routers. For these devices the ARM must be
modified to convert JMAPI requests to theirs management
system, in a similar fashion as WBEM providers do.

2.11. Compatibility with other Management
Protocols

In WBEM there must be a different provider for each
management system. These providers are registered with the
CIMOM so that, when a request arrives, it knows which
provider is capable of handling it. In latest WBEM Beta
SDK, there are several providers, which deal with SNMP-
devices and information specific to Windows 32-bits
systems. This SNMP provider deals only with SNMPv1
protocol, and it does not support SNMP traps. As an SNMP
device is viewed as a collection of CIM schema objects, the
SDK offers a MIB to CIM compiler, easing the burden of
converting between the two different information models.
SNMP support in JMAPI is implemented as SNMP classes.
These classes support SNMPv1 protocol, loading of MIB
definitions and offer a way to convert SNMP traps to JMAPI
events. To support SNMP devices, the ARM must be built
using these classes.
It is important to point out that making WBEM interoperate
with a new management system can be less painful than on
JMAPI. In order to do so, a provider must only register with
the CIMOM (through the use of an appropriate API), which
requires no modification to CIMOM’s code and could be
done without shutting down the system. Supporting a new
protocol on the ARM requires its modification and,
depending on how it was done, could require a new
compilation of its code. Moreover, many JMAPI
characteristics can only be used if we upgrade the managed
device with a JVM, like the agent versioning subsystem and
extensible agents.

3. Conclusions

Analyzing Emerging Web-Based Management Standard

TECHNICAL REPORT ON NETWORKS AND DISTRIBUTED SYSTEMS 8
LARC - EPUSP

JMAPI WBEM

Better use of web technologies Web technologies used only on GUI
RPC-style communication protocol Message-level communication protocol
Security subsystem not defined in the standard,
depending on Java security extensions

Defined security subsystems can be subject of
impersonation, cryptanalysis and eavesdropping

Greater portability achieved through the use of Java
language

Portability depends on porting WBEM libraries to new
platforms

Supports SNMPv1 operations (including traps) Supports SNMPv1 operations, except traps
Building management applications demands
knowledge of Java and the management protocols that
will be used (such as SNMP)

Demands knowledge of Java/Active-X, HMMP and may
demand knowledge of the management protocols that will
be used (if there is not an specific management provider)

Advanced features, such as agent versioning and help
subsystem

Applications must be built on the top of the architecture

Accessible through any Java-enabled browser Accessible through any Active-X or Java-enabled browser
Integration with commercial RDBMS DBMS integrated within management server
Queries made through SQL and JDBC Queries made through subset of SQL language
Needs JVM on managed devices to use some features Does not need to change any managed device

Table 1 - Summary of JMAPI and WBEM characteristics.

The use of web technologies can bring benefits to the
management area, drawing the attention of companies and
researchers alike. Two standards are being developed for
web-based management: the Web-Based Enterprise
Management (WBEM) and the Java Management API
(JMAPI). Table 1 summarizes their main characteristics.

The main drawbacks in the JMAPI standard are the lack of
an integrated security subsystem and the need to upgrade
managed devices with a JVM to use some of its features
(although some companies are seriously considering using
Java in network devices, which may give JMAPI broader
applicability in a near future). It presents, however, better
use of web technologies and advanced features for building
web-based management systems.

WBEM, on the other hand, makes little use of web
technologies and defines new elements, which will need to
go through testing yet. It demands knowledge of an extra
management protocol and information model, and its
security subsystem also presents some serious flaws.

Choosing one of these standards is not an easy task. There
are important supporters on both sides, and important
companies supporting both sides, which can lead to an
uncertainty about which one, if any, should prevail in the
future. Both standards are still immature and present
drawbacks that must be looked into so that they can be used
on enterprise networks. Technically speaking however,
JMAPI may present more facilities for experimenting with
linking web technologies inside the management field,
especially for people who already know management
applications.

4. References

[1] Introduction to HMMP, May 1997
http://wbem.freerange.com/wbem/draft-hmmp-intro-
03.txt

[2] HyperMedia Management Protocol Overview, May
1997

http://wbem.freerange.com/wbem/draft-hmmp-
overview-03.txt

[3] HyperMedia Management Protocol, Protocol
Operations, May 1997
http://wbem.freerange.com/wbem/draft-hmmp-opns-
05.txt

[4] HyperMedia Management Protocol, HMMP Events,
May 1997
http://wbem.freerange.com/wbem/draft-hmmp-events-
02.txt

[5] HyperMedia Management Protocol, Query
Definitions, May 1997
http://wbem.freerange.com/wbem/draft-hmmp-query-
03.txt

[6] HyperMedia Management Protocol, Security and
Administration, May 1997
http://wbem.freerange.com/wbem/draft-hmmp-security-
03.txt

[7] HyperMedia Management Protocol, TCP Transport
Mapping, May 1997
http://wbem.freerange.com/wbem/draft-hmmp-tcp-
transport-02.txt

[8] HyperMedia Management Protocol, Mandatory
Schema, May 1997
http://wbem.freerange.com/wbem/draft-hmmp-
mandatory-schema-03.txt

[9] Common Information Model, Core and Common
Schema, Desktop Management Task Force, Version
1, April 1997
ftp://ftp.dmtf.org./cim/cimdoc20e.PDF

[10] NetPC (Network P System Design Guidelines ,
Version 1.0b)
ftp://download.intel.com/ial/wfm/netpc.pdf

[11] Microsoft Zero Administration for Windows Initiative
http://www.microsoft.com/management

[12] Java Management API Programmer’s Guide
http://java.sun.com/products/JavaManagement/docume
nts/prog_guide/prog_guide.pdf

[13] Java Management API User Interface Style Guide
http://java.sun.com/products/JavaManagement/docume
nts/style_guide/style_guide.pdf

[14] Java Management API User Interface Visual Design
Style Guide

Analyzing Emerging Web-Based Management Standard

TECHNICAL REPORT ON NETWORKS AND DISTRIBUTED SYSTEMS 9
LARC - EPUSP

http://java.sun.com/products/JavaManagement/docume
nts/visual_guide/vis_guide.pdf

[15] Java Management API Help Developer’s Guide
http://java.sun.com/products/JavaManagement/docume
nts/help_guide/help_guide.pdf

[16] RMI Architecture
http://java.sun.com/products/jdk/1.1/docs/guide/rmi/sp
ec/rmiTOC.doc.html

[17] White Paper: Secure Computing with Java: Now and
the Future
http://java.sun.com/marketing/collateral/security.html

[18] Java Security API
http://java.sun.com/products/jdk/1.1/docs/guide/securit
y/JavaSecurityOverview.html

